MAT 0026 and BSC 1086 Module

Topic: Determine proportions and convert change in $\%$ to fractions to prepare chemical solutions

Math lesson 2 - Lesson on determining change in $\% \rightarrow$ fractions, finding an equivalent fraction, and converting words into an algebraic expression and simplifing.

Real World Application - Making chemical solutions for use in biomedical applications. Making dilutions of stock solutions for intravenous feeding into patients.

Background - Solutions are often calculated as weight per volume, that is, grams per liter. An often-used definition is a percent solution. So a 50% solution of a substance is defined as 50 g of a substance dissolved in 100 ml total volume of solvent (usually water). 30% solution would be $30 \mathrm{~g} / 100 \mathrm{ml}$ water.

Problem - if you wanted to make 1 liter $(1000 \mathrm{ml})$ of a 10% solution of saline (NaCl), how many grams (g) of NaCl would you add to 1 liter of water?
Remember that our units are in g of substance per 100 ml of water. Start with converting 10% into a fraction with the correct units. Then write an equivalent fraction with a denominator of 1000 to get your result.

> Part 2 - How much of the 10\% solution would you use to make 1000 ml of $0.9 \% \mathrm{NaCl}$ (physiological saline) for intravenous feeding of a patient?

In other words we want 0.9 out of 10 (the dilution factor) of $\mathbf{1 0 0 0} \mathbf{~ m l}$. As an algebraic expression:
Amount of original needed for new solution $=$
total volume times the quotient of the concentration of the original divided by concentration of the final concentration needed.

- How many ml of the 10% solution will we use and how much water will we add to make a total of 1000 ml ?

