Empowering Math in Physics

Linear Equations
Quadratic Equations
Systems of linear equations
Vectors
Trigonometry

Empowering Math in Physics

$$
\begin{aligned}
& \text { Mat } 1033 \text { : The linear equation } \\
& Y=m X+b, \quad m: \text { slope } ; b: y \text {-intercept } \\
& \text { Case } I: b=0
\end{aligned}
$$

Empowering Math in Physics

PHY 1004: Applications of the Linear Equation
 $$
Y=m x
$$
 $$
\mathrm{m} \text { : slope ; } \quad b=0
$$

Empowering Math in Physics

Empowering Math in Physics

PHY 1004: Applications of the Linear Equation
 $$
Y=m x
$$
 $$
\text { m: slope ; } \quad b=0
$$

Empowering Math in Physics

Force	$\Delta \mathbf{X}$	${ }^{60}{ }^{\text {Hooke's Law }}$
(N)	(cm)	
0	0	${ }_{50}$
0.49	6	,
0.98	12	
1.47	18	$\text { 鬲 } 30-1$
1.96	26	$\frac{\stackrel{\rightharpoonup}{w}_{\stackrel{1}{4}}^{20}}{20}$
2.45	32	
2.94	39	8
3.43	44	
3.92	51	Elongation (cm)

Empowering Math in Physics

PHY 1004: Applications of the Linear Equation $Y=m x \quad m$: slope ; $b=0$

Empowering Math in Physics

PHY 1004: Applications of the Linear Equation $Y=m x$ m : slope ; $b=0$

Graph of the Linear Equation

Case II : b $\neq 0$

MAC 1033
$Y=m x+b$

PHY 1004

$$
V=a t+V o
$$

Empowering Math in Physics

Uniform Motion
(Constant velocity)
$X=V t$
$\mathrm{X}=$ Area $=\mathrm{V} \times \mathrm{t}$

Uniformly Accelerated Motion
(Constant acceleration)
$V=V o+a t$
$X=$ Area1 + Area 2
$X=\operatorname{Vot}+1 / 2(V-V o) t$
$X=V_{o} t+1 / 2 a t^{2}$

Empowering Math in Physics

Mathematics Physics
 $Y=m X+b$
 $Y=m X$
 $a x^{2}+b x+c=0$
 $V=a t+V_{0}$
 $X=V t$
 $F=k X$
 $F=m a$
 $V=R I$
 $X=V_{0} t+1 / 2 a t^{2}$

Empowering Math in Physics

MAT 1033 : Systems of Linear Equations in two Equations and two variables

Solve
$a x+b y=c$
$d x+e y=f$
where x and y are variables and a, b, c, d, e, f are constant
Cases

One solution

No solution

Infinitely many solutions

Solution of a system of two equations

where T and a are variables and μ_{k}, m_{1}, m_{2}, g, are constants.

Newton's Second Law

Solution of a system of two equations

where T and a are variables and $\mu_{k}, m 1, m 2, g$ are

 constantNewton's Second Law
PHY 1004:
Dynamics Problems

$$
\begin{aligned}
& \sum F=m a \\
& T-\mu_{k} m_{1} g=m_{1} a \rightarrow T=m_{1} a+\mu_{k} m_{1} g \\
& m_{2} g-T=m_{2} a \\
& m_{2} g-\left(m_{1} a+\mu_{k} m_{1} g\right)=m_{2} a \\
& -\mu_{k} m_{1} g=m_{2} a-m_{2} g+m_{1} a \\
& a=\frac{m_{2}-\mu_{k} m_{1} g}{m_{1}+m_{2}}
\end{aligned}
$$

Empowering Math in Physics

Falling Object

Vectors

Empowering Math in Physics

Learning Outcomes at MDC

1. Communication
2. Quantitative Analysis

3. Critical/Creative Thinking and Scientific Reasoning
4. Information Literacy
5. Global, Cultural, and Historical Perspectives
6. Personal, Civic, and Social Responsibility
7. Ethical Thinking
8. Computer and Technology Usage
9. Aesthetic Appreciation
10.Natural Systems and the Environment
