You Think. . .You Got Problems

Effective problem solving skills are needed to successfully navigate the collegiate and workplace environments. Cultivating good problem solving skills requires preparation, practice and persistence. Polya's four step problem solving process first published in How to Solve It is a powerful and adaptable strategy and will serve as a starting point in developing problem solving skills.

Polya's Four Step Process

1. Understand the Problem
2. Devise a Plan
3. Carry out the Plan
4. Check results

These simple but powerful steps that can be applied to almost any problem, real life, arithmetic, algebra, word problems or virtually any other situation to build a solid problem solving repertoire. Many people disregard the first and last steps, not gaining a thorough understanding of the problem, jumping right in to find an answer and never looking back and are frequently stumped by similar problems later. Serious reflection on the problems and their solutions with a focus on the problem solving process is precisely what is needed to truly develop into a good problem solver.

1. Understanding the Problem/Preparation

It is important to fully understand the problem to be solved and keep in mind exactly what is to be found or done. Problems can be presented in a variety of ways; orally or in various written formats such as words, charts, tables or diagrams. You must understand the vocabulary used in the context of the problem at hand and should become familiar with typical problems and formats specific to your area of study. You will need to develop reading and listening strategies for extracting information, determining what is known and what is to be found, as well as what information is extraneous or unnecessary.

Ask yourself:

- Can you restate the problem in your own words?
- What do the key words really mean?
- What exactly is the problem asking you to do?
- Do you have the necessary information?
- Do you need all the given information?
- Would a diagram or picture help?
- How will you know when you are finished?
- What will the answer look like?

Things to try/do:
\checkmark Put the problem in context (restate and relate to the real world)
\checkmark State specifically the goal of the problem
\checkmark Make a list or table of given information, including units
\checkmark Disregard extraneous information
\checkmark Draw a picture or diagram and represent the unknown
\checkmark Make a model (mental, written or physical)

2. Devise a plan/Incubation

Think about the problem as you understand it. In planning a solution, the key is to relate the given information to the task at hand. Consider modeling a solution after a similar or related problem, there is an advantage to having a large "bag of tricks". Perhaps the problem can be solved as a series of sub-problems or by breaking it down into smaller parts. The focus of this stage is to connect what you know to what must be done. Making this connection may involve mathematical operations, formulas or equations, and may require additional research. For more involved problems a complete method of solution not usually obvious. Try to think "outside the box", take a chance on a fresh approach and explore the possibilities.

Ask yourself:

- Do you know a related or similar problem?
- Would a formula be useful in solving the problem?
- Do I have all the necessary information, if not can I find it?
- Can the problem be broken into smaller parts?
- How does what I know help me toward my goal?

Things to try/do:
\checkmark Gather additional information using recall, estimation or research
\checkmark Think of the problem as partially solved
\checkmark Solve a simpler related problem
\checkmark Eliminate extraneous information
\checkmark Work backwards
\checkmark Guess check and revise
3. Carry out the Plan/Illumination - In some respects the easiest of the four steps and the most revealing. Carefully carry out the plan, checking the work and logic at every step. Working through a problem can give insight into how things work and add to your "bag of tricks". Should carrying out the original plan prove difficult, go back and devise another plan of attack using what has been learned from the first attempt.
Persistence is the name of the game here.
Ask yourself:

- Is this right?
- Can it be proved to be correct?

Things to do:

- Keep an organized record of your work
- Double check each step or sub-problem
- Reevaluate your plan as you work (possibly repeat step 2)

4. Check Results/Verification - Look back on the solution and the problem solving process. The solution should be reasonable, actually answer the question posed and have the correct units. The process used to arrive at the solution could lead to solving additional problems in the future, consider what other problems could be solved in a similar way. Reflect back on the problem solving process for effectiveness and possibly generalize the results.

Ask yourself:

- Do the results make sense?
- Does the result have the expected units?
- Do the results compare favorably with your estimate?
- Can you solve it differently and get the same result?
- Can other problems be solved in this same way?
- Is the solution surprising?

Things to do
:

- Verify the solution meets the conditions of the problem
- Retrace your steps and reexamine what you have done
- Represent your solution clearly and concisely
- Consider any uncertainties or assumptions made
- Consider the implications of your results

Activities and Problems

Students ideally will practice solving problems in the context of their vocational education program. The applications should be directly relevant to their course of study. This will minimize the challenge of transferring applied math skills to their coursework and the workplace.

Vocabulary activity (List course specific vocabulary)
Make a list of words that are used in a special way related to your discipline or course of study.
Example: gross and net, wages
Journal Create a library of specific math problems (and solutions) encountered in your discipline

1. Compute the gross weekly earnings of an employee that makes $\$ 10.25$ per hour and works a 40 hour week. (Level 3)
2. Compute the total gross weekly earnings of an employee that works a 40 hour week at regular time and 7 hours of overtime. The employee makes $\$ 9.50$ per hour regularly, and time and a half for overtime. (Level 4)
3. Refer to the given time card:

Compute Ralph Pope's total gross weekly earnings if his regular hourly wage is $\$ 11.00$ per hour. (Level 4)

Employee Weekly Hours

Hours worked over 8.0 in a day paid at 1.5 of regular hourly rate.

Employee	M	TU	W	TH	F	S	Total Hours
Ralph Pope	8.0	6.0	9.0	7.0	10.0		
Lynn Priest	7.0	3.0	7.0	8.0	8.0	4.5	

The following diagrams are to be used with example questions 4 through 8 :

4. What percentage of Cheryl's gross earnings was withheld from her check in week three? (Level 5)
5. Compare the withholdings in weeks one and two by amounts and as a percentage of gross earnings. (Level 5)
6. Is Cheryl's overtime rate correct, based on the federal requirement of one and a half times the hourly rate for hours worked over forty in a workweek? (Level 6)
7. Cheryl's time card for week ending $1 / 19 / 07$ is shown below. Cheryl feels that she has been under paid, explain. (Level 6)

Employee Time Record				
Employee Name Cheryl Crowson				
Pay Type Salary				
Pay period for the weekending January 19, 2007				
Date	Time In	Time Out		
$1 / 15$	$8: 00 \mathrm{am}$	$3: 30 \mathrm{pm}$		
$1 / 16$	$8: 15 \mathrm{am}$	$4: 30 \mathrm{pm}$		
$1 / 17$	$8: 15 \mathrm{am}$	$4: 30 \mathrm{pm}$		
$1 / 18$	$8: 00 \mathrm{am}$	$4: 15 \mathrm{pm}$		
$1 / 9$	$8: 00 \mathrm{am}$	$4: 45 \mathrm{pm}$		

8. Create a plausible time card for Cheryl for the payroll week ending January 19 , 2007. With the following constraints; Cheryl can not arrive before 9:00 am, she must take a 30 minute unpaid lunch break, and must leave when the office closes at 6:00 pm.(Level 7)

Level 3: All needed information is presented in a logical order and translates easily from a word problem to a math equation. There is no extra information given and only straight- forward, single math operations are used on whole numbers. Simple conversions (time and money) and changing numbers from one form to another may be performed.

Level 4: The information may be presented out of order and extra, unnecessary data may be included. It might be necessary to read and/or interpret a graph or diagram to glean out important, needed information. Problems may include more than one math operation, as well as, ordering the given information before performing calculations such as averages, ratios, proportions and rates using whole numbers and decimals .

Level 5: Problems require several steps of logic and calculations. Decisions must be made as to what information, calculations, or conversions are needed to solve the problem. Formulas may be needed to make conversions between systems of measurement. Comparisons may be used to determine the best choice in a given situation. Calculations of perimeters and areas of simple shapes may be required, as well as, percent discounts or markups

Level 6: Problems may require considerable translation from verbal to mathematical expression and will generally require considerable setup and involve multiple-step calculations. The use of two formulas may be needed to change from one unit in one system of measurement to a unit in another system. Formulas may need to be rearranged before they are used. Finding errors and troubleshooting mistakes in problems that belong at levels 3 , 4 or 5 may be required. Finding the volume of rectangular solids and calculating multiple rates may be expected.

Level 7: The content or format of the given information may be unusual and may even be incomplete. Solutions may involve 4 or more steps of logical reasoning. Problems may have more than one unknown and could include nonlinear relationships. Conversions between systems of measurement that involve fractions, decimals, mixed numbers and percentages may be required. Calculations of multiple areas and volumes of spheres, cylinders, or cones may be necessary. Finding the best deal when several choices are available, troubleshooting errors in level 6 questions, setting up and manipulating complex ratios and proportions, applying basic statistical concepts, calculating multiple areas and volumes of spheres, cylinders, or cones may be necessary.
*Derived from ACT WorkKeys Applied Mathematics Levels

Characteristics/Skills

There are five levels of difficulty. Level 3 is the least complex and Level 7 is the most complex. The levels build on each other, each incorporating the skills assessed at the previous levels. For example, at Level 5, individuals need the skills from Levels 3, 4, and 5.

LEVEL	CHARACTERISTICS	SKILLS
$\mathbf{3}$	$\begin{array}{l}\text { Translate easily from a word problem } \\ \text { to a math equation } \\ \text { All needed information is presented } \\ \text { in logical order } \\ \text { No extra information }\end{array}$	$\begin{array}{l}\text { Solve problems that require a single } \\ \text { type of mathematics operation } \\ \text { (addition, subtraction, multiplication, } \\ \text { and division) using whole numbers } \\ \text { Add or subtract negative numbers } \\ \text { Change numbers from one form to } \\ \text { another using whole numbers, fractions, } \\ \text { decimals, or percentages } \\ \text { Convert simple money and time units } \\ \text { (e.g., hours to minutes) }\end{array}$
$\mathbf{4}$	$\begin{array}{l}\text { Information may be presented out of } \\ \text { order } \\ \text { May include extra, unnecessary } \\ \text { information }\end{array}$	$\begin{array}{l}\text { Solve problems that require one or two } \\ \text { operations }\end{array}$
$\begin{array}{l}\text { May include a simple chart, diagram, } \\ \text { or graph }\end{array}$	$\begin{array}{l}\text { Multiply negative numbers } \\ \text { Calculate averages, simple ratios, } \\ \text { simple proportions, or rates using whole } \\ \text { numbers and decimals } \\ \text { Add commonly known fractions, } \\ \text { decimals, or percentages (e.g., 1/2, } \\ \text {.75, } \\ \text { Add up to three fractions that share a } \\ \text { common denominator } \\ \text { Multiply a mixed number by a whole }\end{array}$	
number or decimal		
Put the information in the right order		
before performing calculations		

$\left.\begin{array}{|c|l|l|}\hline \mathbf{6} & \begin{array}{l}\text { May require considerable translation } \\ \text { from verbal form to mathematical } \\ \text { expression } \\ \text { Generally require considerable } \\ \text { setup and involve multiple-step } \\ \text { calculations }\end{array} & \begin{array}{l}\text { step calculations and then comparing } \\ \text { results } \\ \text { Calculate perimeters and areas of basic } \\ \text { shapes (rectangles and circles) } \\ \text { Calculate percent discounts or markups }\end{array} \\ \hline \text { Use fractions, negative numbers, ratios, } \\ \text { percentages, or mixed numbers } \\ \text { Rearrange a formula before solving a } \\ \text { problem } \\ \text { Use two formulas to change from one } \\ \text { unit to another within the same system } \\ \text { of measurement } \\ \text { Use two formulas to change from one } \\ \text { unit in one system of measurement to a } \\ \text { unit in another system of measurement } \\ \text { Find mistakes in questions that belong } \\ \text { at Levels 3, 4, and 5 } \\ \text { Find the best deal and use the result } \\ \text { for another calculation } \\ \text { Find areas of basic shapes when it may } \\ \text { be necessary to rearrange the formula, } \\ \text { convert units of measurement in the } \\ \text { calculations, or use the result in further } \\ \text { calculations } \\ \text { Find the volume of rectangular solids } \\ \text { Calculate multiple rates }\end{array}\right\}$

```
Distance
1 foot = 12 inches
1 yard = 3 feet
1 mile = 5,280 feet
1 mile \approx }1.61\mathrm{ kilometers
1 inch = 2.54 centimeters
1 foot = 0.3048 meters
1 meter = 1,000 millimeters
1 meter = 100 centimeters
1 kilometer = 1,000 meters
1 kilometer }\approx0.62\mathrm{ miles
Area
1 square foot = 144 square inches
1 square yard = 9 square feet
1 acre = 43,560 square feet
Volume
1 cup = 8 fluid ounces
1 quart = 4 cups
1 gallon = 4 quarts
1 gallon = 231 cubic inches
1 liter \approx 0.264 gallons
1 cubic foot = 1,728 cubic inches
1 cubic yard = 27 cubic feet
1 board foot = 1 inch by 12 inches by 12 inches
Weight
1 ounce \approx 28.350 grams
1 pound = 16 ounces
1 pound }\approx453.592\mathrm{ grams
1 milligram = 0.001 grams
1 kilogram = 1,000 grams
1 kilogram }\approx2.2\mathrm{ pounds
1 ton = 2,000 pounds
Rectangle
perimeter = 2(length + width)
area = length x width
Rectangular Solid (Box)
volume = length x width x height
Cube
volume = (length of side)}\mp@subsup{)}{}{3
Triangle
sum of angles = 180
area =**(base x height)
Circle
number of degrees in a circle =360
```

```
circumference }\approx3.14\times\mathrm{ diameter
area }\approx3.14\times(\mathrm{ radius)}\mp@subsup{}{}{2
Cylinder
volume }\approx3.14\times(\mathrm{ radius )}\mp@subsup{}{}{2}\times\mathrm{ height
Cone
volume }\approx\frac{3..1\times(radius)\mp@subsup{)}{}{2}\timesheight}{3
Sphere (Ball)
volume = "x 3.14 x (radius)}\mp@subsup{}{}{3
Electricity
1 kilowatt-hour = 1,000 watt-hours
amps = watts \divvolts
Temperature
```


