PERCENTS, FORMULAS, AND THE CULINARY ARTS

Florida Community College at Jacksonville Jerrett Dumouchel Mathematics
Scott Flax Mathematics
Bob Mark Culinary/Hospitality Management
Reta Roberts Criminal Justice Jerry Shawver Mathematics

OBJECTIVES

- To show the algebraic and mental approach to solving percent related questions in applied situations for culinary students.
- To show the techniques for solving 'on the job' formulas for culinary students.

PERCENTS

- Introduce mental percents by using a tipping situation from a restaurant scenario.
- This will lead into the algebraic way of calculating percents for tougher values (i.e. $130 \%, 39 \%, 1.35 \%)$.
- We will then apply the skills above to calculate food, beverage, and labor cost percents.
- The lesson will culminate with a group activity involving a profit/loss statement.

FORMULAS

- Introduce the students to basic formulas using the interest equation as it relates to investing in a restaurant.
- I=PRT
- Using the "pyramid", we show students how to use formulas that they will use on the job
- Food Cost = Food Sales x Food Cost \%
- Beverage Cost = Beverage Sales x Beverage Cost \%
- Labor Cost = Total Sales x Labor Cost \%

TIME SERIES GRAPHS IN CRIMINAL JUSTICE

Florida Community College at Jacksonville Jerrett Dumouchel Mathematics
Scott Flax Mathematics
Bob Mark Culinary/Hospitality Management
Reta Roberts Criminal Justice
Jerry Shawver Mathematics

OBJECTIVES

- To interpret and analyze statistics using a timeseries graph.
- To construct a time-series graph from real world data.
- To compare different data sets using two different time-series graphs.

TIME-SERIES GRAPHS

- Introduction of crime and crime trends using various graphs and tables.
- Construct a time-series graph from a table of real world data.
- Analyze the data that was just graphed.
- Construct a second time-series graph from the same table and then analyze the data again.
- Compare the two graphs for trends, correlations, and anomalies.
- Discuss the 'Why's' behind the data.

